
Soft(ware)Ball

Goal
Play as a team to get the maximum score in a 6-innings game.

Playing the Game
The goal of each inning is to solve a ball path puzzle by using programmable components. Each
component is loaded with a single program.
To check that a proposed solution works, the components are impersonated by the members of
the team.

When the team members agree on a good solution, they close the inning and count the score.
With each solved puzzle, the team gets 10 points minus the cost of the programs that were used.

Cost of a program = number of events + number of actions + number of states
This cost can be quickly estimated by counting the number of verbs in the program.

The programs that were paid in a previous inning can be reused in the following innings without
any additional cost. However, these program must be reused as-is without any modification.
Any complete program can be duplicated at zero cost.

Example

One possible solution Another solution

Inning 1 out of 6

Drawing showing the
ground marks for the ball
path

Textual description
of the expected ball
path

Name of the game

Formal
description of
the ball path

Inning
Sheet

Peter
at mark B

Jane at
mark A

Score sheet after 1st inning

To run the system, the
user send the ball to

Jane

When I receive
the ball, I send it
to Peter

When I receive
the ball, I send it
to Jane

Cost = 2 Cost = 2

Peter
at mark B

Jane at
mark A

Score sheet after 1st inning

The 2nd program cost
nothing because it is an

identical copy of the 1st one

When I receive the
ball, I send it to the
component which
is in front of me

Cost = 3

When I receive the
ball, I send it to the
component which
is in front of me

Cost = 0

Structure of a program

A program is a set of rules
<program> ::= <rule> [<program>]

Each rule describes an operation which is executed when an event occurs for one of the actors
<rule> ::= "When" <actor> <event> "," <operation>

An operation is an action executed by a programmed component. Many operations can be
executed one after the other or upon a given condition
<operation> ::=

"me" <action>
| <operation> ["and" <operation>]
| "if" <condition> "then" <operation> ["else" <operation>]

An actor is a component identified by a name or by its state
<actor> ::= "me"|"it"|<name>|"the component which" <state>|"a component"

The name of the components are defined before the game and cannot be changed
<name> ::= "Peter" | "Jane" | ...

A condition is an observation of an actor in a given state. Conditions can be grouped using logical
operators.
<condition> ::=

<actor> <state>
| <condition> "and" <condition> | <condition> "or" <condition>

An action is an unambiguous physical effort performed by a component. The listed actions are only
examples. Players can ask the referee to add additional items to this list. However, players shall
keep in mind that components cannot read, write, compute, or talk.
<action> ::=

send the ball to <actor> | go to mark <position>
| turn <actor> facing to <actor> | turn <actor> over
| turn <actor> left | turn <actor> right | ...

A position is a mark on the ground
<position> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | ...

An event is seeing or hearing something happening on the game spot. This includes all possible
actions.
<event> ::=

send the ball | hear <word> | <action>
| receive the ball | receive the ball from <actor>

A word is a sound pronounced by the program user (because components cannot talk).

A state is a stable physical description of an actor. The listed states are only examples. Players can
ask the referee to add additional items to this list.
<state> ::=

be at mark <position> | be beside <actor>
| be at the left of <actor> | be at the right of <actor> | ...

When a program is complete, it can be transformed into correct English for clarity purpose (using
personal pronouns, possessive adjectives, appropriate tenses...) These adaptations do not change
the cost of the program.

	Soft(ware)Ball

